This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK


Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title $\sim$ content=t713455674

SYNTHESIS AND CHARACTERIZATION OF TRIS(ALKYLISOCYANIDE) BIS(TRIARYL-PHOSPHINE)COBALT(II) COMPLEXES

Clifford A. L. Becker ${ }^{\text {a }}$

${ }^{\text {a }}$ Departments of Chemistry, University of Botswana, Gaborone, Botswana

To cite this Article Becker, Clifford A. L.(2000) 'SYNTHESIS AND CHARACTERIZATION OF TRIS(ALKYLISOCYANIDE) BIS(TRIARYL-PHOSPHINE)COBALT(II) COMPLEXES', Journal of Coordination Chemistry, 50: 1, 89 - 103 To link to this Article: DOI: 10.1080/00958970008054928
URL: http://dx.doi.org/10.1080/00958970008054928

## PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


# SYNTHESIS AND CHARACTERIZATION OF TRIS(ALKYLISOCYANIDE)BIS(TRIARYLPHOSPHINE)COBALT(II) COMPLEXES 

CLIFFORD A.L. BECKER<br>Department of Chemistry, University of Botswana, P/Bag 0022, Gaborone, Botswana

(Received 30 March 1999)


#### Abstract

A series of complexes having the general formula, $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}_{2}, \mathrm{X}=\mathrm{ClO}_{4}, \mathrm{BF}_{4}$ with $\mathrm{CNR}=\mathrm{CNCMe}_{3}, \mathrm{CNCHMe}_{2}, \mathrm{CNC}_{6} \mathrm{H}_{11}, \mathrm{CNCH}_{2} \mathrm{Ph}$ and $\mathrm{PR}_{3}=\mathrm{PPh}_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}$, $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{p}\right)_{3}$ has been synthesized and characterized. Synthesis can be achieved by reaction of $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsPh}_{3}\right)_{2} \mathrm{X}_{2}\right.$ complexes with controlied excess of $\mathrm{PR}_{3}$ ligands, and by $\mathrm{AgClO}_{4} /$ $\mathrm{AgBF}_{4}$ oxidation of the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}$ complexes. The latter procedure is preferable. Alternate syntheses of the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}$ complexes have aiso been employed. Fivecoordinate Co(II) complexes have not been obtained using $\mathrm{CNCMe}_{3}$ with $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me} \text {-p) }\right)_{2}$ ligands, $\mathrm{CNCH}_{2} \mathrm{Ph}$ with $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{p}\right)_{3}$ ligands, or $\mathrm{CNC}_{4} \mathrm{H}_{9}-n$ with $\mathrm{PPh}_{3}$ ligands. [ $\mathrm{Co}(\mathrm{CNC}-$  with excess $\mathrm{AgClO}_{4}$. $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes appear to undergo varying degrees of distortion from regular (i.e., $D_{3 h}$ symmetry) axially-disubstituted trigonal bipyramidal coordination in the solid state, as evidenced by $v(-N \equiv \mathrm{C})$ IR patterns, but to assume regular trigonal bipyramidal coordination in solution. Effective magnetic moments indicate one-electron paramagnetism, and solution electronic spectra are compatible with trigonal bipyramidal coordination.


Keywords: Alkylisocyanide; triarylphosphine; cobalt(II) complexes; low-spin complexes

## INTRODUCTION

Reactions of triarylphosphines and trialkylphosphines with $\mathrm{Co}(\mathrm{II})$-alkylisocyanide complexes are well-established as reduction/ligand substitution in which the disubstituted five-coordinate $\mathrm{Co}(\mathrm{I})$ complexes, $\left[\mathrm{Co}(\mathrm{CNR})_{3}-\right.$ $\left(\mathrm{PR}_{3}\right)_{2} \mathrm{ClO}_{4}$, are recovered usually in good yields. ${ }^{1-7}$ Reactions with [Co$\left.\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{Co}_{2}(\mathrm{CNCHMe})_{10}\right]\left(\mathrm{ClO}_{4}\right)_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ have been
extensively investigated in this laboratory. ${ }^{5.6}$ In one instance, however, a $\mathrm{Co}(\mathrm{II})$ complex, $\left.\left[\mathrm{Co}(\mathrm{CNCHMe})_{3}\right)_{3}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, was also recovered, but only as a minor product. ${ }^{8}$ Cyclic voltammograms in $\mathrm{CH}_{3} \mathrm{CN}$ for $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ complexes with both triarylphosphine and trialkylphosphine ligands often exhibit quasi-reversible behaviour ( $\Delta E_{\mathrm{p}}=$ $60-250 \mathrm{mV})$, ${ }^{9}$ suggesting a finite existence of the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right]^{2+}$ species. A stable, five-coordinate $\mathrm{Co}(\mathrm{II})$ complex with alkylisocyanide and triarylphosphine ligands, $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, has recently been synthesized, both by reaction of excess $\mathrm{PPh}_{3}$ with $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\right.$ $\left.\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and by oxidation of $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{ClO}_{4}\right.$ with $\mathrm{AgClO}_{4}{ }^{10}$
This paper reports the synthesis and characterization of a series of $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ complexes, systematically prepared with the alkylisocyanides, $\mathrm{CNCMe}_{3}, \mathrm{CNC}_{6} \mathrm{H}_{11}, \mathrm{CNCHMe}_{2}$, and $\mathrm{CNCH}_{2} \mathrm{Ph}$, and the triarylphosphines, $\mathrm{PPh}_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}$, and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}$. Limits to the range of stability for the $\mathrm{Co}(\mathrm{II})$ oxidation state with regard to the triarylphosphine ligand are also investigated.

## EXPERIMENTAL

## Reagents

Commercially available alkylisocyanides, $\mathrm{CNCMe}_{3}, \mathrm{CNC}_{6} \mathrm{H}_{11}, \mathrm{CNCHMe}_{2}$, $\mathrm{CNCH}_{2} \mathrm{Ph}$, and $\mathrm{CNC}_{4} \mathrm{H}_{9}-n$ (Strem Chemicals, Fluka, and Aldrich) were used without redistillation. [ $\left.\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2},\left[\mathrm{Co}_{2}(\mathrm{CNCH}-\right.$ $\left.\left.\mathrm{Me}_{2}\right)_{10}\right]\left(\mathrm{ClO}_{4}\right)_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Co}_{2}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{10}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, and $\left[\mathrm{Co}\left(\mathrm{CNC}_{6}-\right.\right.$ $\left.\left.\mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ were synthesized as previously reported. ${ }^{5,6,11,12}$ Commercially available triarylphosphines, $\mathrm{PPh}_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}-\right.$ $\mathrm{Me}-p)_{3}$, and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p\right)_{3}$ (Strem Chemicals) were used without recrystallization. Anhydrous $\mathrm{AgClO}_{4}$ and $\mathrm{AgBF}_{4}$ were supplied by Strem Chemicals. Solvents used for IR and electronic spectra, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$, and $\mathrm{CH}_{3} \mathrm{NO}_{2}$, were of the purest grade commercially available. Anhydrous diethylether was filtered through an alumina column immediately before use.

## Instrumentation

IR spectra were recorded on a Perkin Elmer 2000 FT-IR spectrophotometer. Solution electronic spectra were recorded on a Shimadzu UV-2101 spectrometer, over the range $900-200 \mathrm{~nm}$, and on a Perkin Elmer Lambda 12
spectrometer, over the range $1100-600 \mathrm{~nm}$. Magnetic susceptibilities were measured at room temperature using a Johnson Matthey Alfa magnetic susceptibility balance. $\mathrm{C}, \mathrm{H}$, and N elemental analyses were obtained commercially and performed using a Carlo Erba CHN-O/S elemental analyzer, model 1106. Co was analysed for samples dissolved in BDH HiperSolv methanol for HPLC using a Varian SpectrAA. 10 atomic absorption spectrometer operating at 304.4 nm with 0.5 nm slit width. Standards were prepared from $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Co} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ analysed reagent in HPLC-grade methanol over the range $25-45 \mathrm{ppm}$ Co.

## $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$

A 500 mg sample of $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ was dissolved in $3.5 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through cotton using $0.5 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as rinse, and chilled in ice. Then 291 mg of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}(1: 2.5 \mathrm{Co}: \mathrm{P}$ mol ratio) dissolved in $1.0 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise while the solution was stirred. The solution colour changed from dark green, through yellowbrown, to dark red-brown as the ligand was added. The solution was allowed to stand for 3 min at room temperature, after which ether was added dropwise. Initial precipitation of a rust-red coloured product was observed after $16.0 \mathrm{~cm}^{3}$ of ether had been added. A total of $22.0 \mathrm{~cm}^{3}$ of ether was added, and the mixture was chilled in ice for 45 min . The brick-red microcrystalline product was filtered from an orange-coloured solution, and washed twice with $2.0 \mathrm{~cm}^{3}$ portions of ether. The crude product ( $265 \mathrm{mg}, 58 \%$ yield) was dissolved in $1.5 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through cotton, and precipitated by dropwise addition of $3.5 \mathrm{~cm}^{3}$ of ether. After chilling in ice ( 45 min ), the bright red-brown microcrystals were filtered and washed twice with $2.0 \mathrm{~cm}^{3}$ portions of ether. Yield: 220 mg ( $83 \%$ recovery; $\mathbf{4 8} \%$ overall yield).

Addition of $2.5 \mathrm{~cm}^{3}$ of ether to the original filtrate, and overnight refrigeration, afforded a second crop of mixed red-brown and dark green microcrystals ( 118 mg ). Nujol IR spectra confirmed the presence of $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}\right\}_{2}\right\}\left(\mathrm{ClO}_{4}\right)_{2}$ and unreacted $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\right.$ $\left.\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, but the absence of any $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left\{\mathrm{P}^{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}\right\}_{2}\right.$ $\mathrm{ClO}_{4}$, thus increasing the apparent yield of crude product by $24-26 \%$.

## $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]_{\mathrm{ClO}}^{4} 4$

A 500 mg sample of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ was dissolved in $4.0 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{3} \mathrm{CN}$, filtered through cotton using $0.5 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{3} \mathrm{CN}$ as rinse, and chilled in ice. Then, 1.078 g of $\mathrm{PPh}_{3}$ ( $1: 5 \mathrm{Co}: \mathrm{P}$ mol ratio) dissolved in
$1.0 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise while the solution was stirred. The dark blue solution rapidly became red-orange during ligand addition. As soon as ligand addition was completed, diethylether was added dropwise at room temperature. Initial precipitation of a golden-yellow product was observed after $5.0 \mathrm{~cm}^{3}$ of ether had been added. A total of $15.0 \mathrm{~cm}^{3}$ of ether was added, and the reaction mixture was chilled in ice for 45 min . The golden-yellow microcrystalline product was filtered from a dark orange coloured solution, and washed twice with $2.0 \mathrm{~cm}^{3}$ portions of ether. Yield: 261 mg ; Nujol IR spectra indicated that this first crop was a mixture of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$.
The original filtrate was partially evaporated at room temperature under a fume hood, re-dissolved in $1.0 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and filtered through cotton. Dropwise addition of $12.5 \mathrm{~cm}^{3}$ of ether induced precipitation of an orange solid. After thorough chilling in ice ( 1 h ), the pale orange microcrystals were filtered from the orange solution and washed twice with $2.0 \mathrm{~cm}^{3}$ portions of ether. Yield: $401 \mathrm{mg}(52 \%)$; Nujol IR spectra indicated that this crop was only $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$.
The first crop was dissolved in $2.0 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, three drops of $\mathrm{N}_{2} \mathrm{H}_{4}$. $\mathrm{H}_{2} \mathrm{O}$ were added, and the resulting mixture was vigorously agitated for several minutes before decantation of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase from a small aqueous phase (mostly adhering to the walls of the flask) and filtration through cotton. Dropwise addition of $10.0 \mathrm{~cm}^{3}$ of ether and chilling in ice ( 45 min ) afforded a crop of golden-yellow microcrystalline product ( 209 mg ), which was combined with the original second (crude) crop. Combined $\mathrm{Co}(\mathrm{I})$ product (i.e., $610 \mathrm{mg} ; 80 \%$ yield) was then dissolved in $2.0 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through cotton, precipitated by dropwise addition of $6.0 \mathrm{~cm}^{3}$ of ether, chilled in ice ( 45 min ), filtered and washed twice with $2.0 \mathrm{~cm}^{3}$ portions of ether. Yield: 596 mg ( $98 \%$ recovery; $78 \%$ overall yield).

## $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mid\left(\mathrm{ClO}_{4}\right)_{2}\right.$

A 500 mg sample of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ was dissolved in $1.5 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through cotton using $0.5 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as rinse. Then 110 mg of crushed $\mathrm{AgClO}_{4}(1: 1.10 \mathrm{Co}: \mathrm{Ag}$ mol ratio) was added, and the heterogeneous reaction mixture was stirred vigourously for 15 min . The white $\mathrm{AgClO}_{4}$ blackened upon contact with the solution, and an Ag mirror formed on the bottom and walls of the flask. The solution was decanted from the residual solid and filtered through cotton twice using $0.5 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ rinse each time. Dropwise addition of ether to this clear, dark yellow solution caused an almost immediate precipitation of bright yellow
solid. A total of $5.0 \mathrm{~cm}^{3}$ of ether was added, and the reaction mixture was chilled in ice for 45 min . The yellow product was filtered from a yellowbrown solution, and washed twice with $1.5 \mathrm{~cm}^{3}$ portions of ether. The crude product ( $395 \mathrm{mg} ; 72 \%$ yield) was dissolved in $3.0 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through cotton, and precipitated by dropwise addition of $5.0 \mathrm{~cm}^{3}$ of ether. After chilling in ice ( 45 min ), the canary-yellow microcrystals were filtered from the pale orange filtrate and washed twice with $1.5 \mathrm{~cm}^{3}$ portions of ether. Yield: 296 mg ( $75 \%$ recovery; $54 \%$ overall yield). Upon overnight refrigeration, a second crop of darker yellow compound ( 71 mg ) was recovered, but Nujol IR indicated a mixed $\mathrm{Co}(\mathrm{II})-\mathrm{Co}(\mathrm{I})$ composition so this small sample was discarded.

## $\left[\mathrm{Co}(\mathrm{CNCHMe})_{3}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}}\right.\right.$

A 1.000 g sample of $\left[\mathrm{CO}_{2}(\mathrm{CNCHMe})_{10}\right]\left(\mathrm{ClO}_{4}\right)_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ was dissolved in $3.0 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through cotton using additional $0.5 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as rinse, and chilled in ice. Next, 1.875 g of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}(1: 3.5$ $\mathrm{Co}: \mathrm{P}$ mol ratio) dissolved in $5.0 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise while the solution was stirred. The dark blue solution took on a blood-red colour as the ligand was added. Then, six drops of $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ were added, and the mixture was stirred vigourously for 1.5 min , while the colour changed to the red-orange (bromine-colour) characteristic of $\mathrm{Co}(\mathrm{I})$ solutions. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase was decanted and twice filtered through cotton. Dropwise addition of ether effected precipitation after addition of $15.0 \mathrm{~cm}^{3}$ of ether. A total of $18.0 \mathrm{~cm}^{3}$ of ether was added, and the reaction mixture was chilled in ice for 1.5 h . The golden-yellow microcrystalline product was filtered from a bright orange-coloured filtrate, and washed twice with $2.0 \mathrm{~cm}^{3}$ portions of ether. Yield: $1.475 \mathrm{~g}(86 \%)$. The crude product was dissolved in $2.5 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through cotton, and precipitated by dropwise addition of $6.0 \mathrm{~cm}^{3}$ of ether. After chilling in ice ( 45 min ), the golden-yellow microcrystals were filtered from a pale orange solution and washed twice with $2.0 \mathrm{~cm}^{3}$ portions of ether. Yield: 1.410 g ( $96 \%$ recovery; $82.5 \%$ overall yield).

## RESULTS AND DISCUSSION

Physical properties of the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}_{2}, \mathrm{X}=\mathrm{ClO}_{4}, \mathrm{BF}_{4}$ complexes in the solid state are summarized in Table I; some physical properties in the solution state are listed in Table II; typical $\nu(-N \equiv C)$ IR patterns in Nujol mull and in solution are illustrated in Figure 1; diamagnetic
TABLE 1 Solid state properties of tris(alkylisocyanide)bis(triarylphosphine)cobalt(II) complexes

| Complex/Colour/m.p. | $\nu(-N \equiv C)^{2}$ | $\chi_{\mathrm{g}} \times 10^{6} / \mu_{\text {crf }}$ | Elemental analysis, found/calc. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | C | H | $N$ | Co |
| $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PPH}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ | 2178 vs | $1.76 \pm 0.03$ | 58.84 | 5.63 | 3.98 | 5.10 |
| Canary yellow | $\approx 2205 \mathrm{vw}(\mathrm{sh})$ | $2.45 \pm 0.02 \mathrm{BM}$ | 59.37 | 5.57 | 4.07 | 5.71 |
| $178-182^{\circ} \mathrm{C}$ (dec) | $\approx 2150 \mathrm{vw}(\mathrm{sh})$ |  |  |  |  |  |
| $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left(\mathrm{PPH}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ | 2190 vs | $\begin{aligned} & 0.850 \pm 0.018 \\ & 1.92 \pm 0.01 \mathrm{BM} \end{aligned}$ | 61.70 | 5.73 | 3.76 | 5.00 |
| Golden yellow | 2208 w (sh) |  | 61.69 | 5.72 | 3.70 | 5.31 |
| 195-200 ${ }^{\circ} \mathrm{C}$ (dec) | $\approx 2155 \mathrm{vw}(\mathrm{sh})$ |  |  |  |  |  |
| $\left[\mathrm{Co}(\mathrm{CNCHMe})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 2190 vs | $2.92 \pm 0.04$ | 56.52 | 5.11 | 4.05 | 5.78 |
| Golden yellow | $\approx 21.57 \mathrm{vw}(\mathrm{sh})$ | $2.89 \pm 0.02 \mathrm{BM}$ | 56.44 | 5.08 | 4.07 | 5.71 |
| 192-200 ${ }^{\circ} \mathrm{C}$ (dec) |  |  |  |  |  |  |
| $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2} \cdot 0.3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 2193 vs | $1.053 \pm 0.007$ | 64.23 | 4.76 | 3.65 | $1^{\text {b }}$ |
| Yellow-brown | 2209 s | $2.07 \pm 0.01 \mathrm{BM}$ | 63.87 | 4.59 | 3.71 | 5.20 |
| $188-192^{\circ} \mathrm{C}$ (dec) |  |  |  |  |  |  |
| $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 0.8 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\begin{gathered} 2195 \mathrm{vs} \\ \sim 2178 \mathrm{sh} \end{gathered}$ | $2.05 \pm 0.08$ | 60.52 | 6.21 | 3.29 | 4.53 |
| Brick red |  | $2.77 \pm 0.04 \mathrm{BM}$ | 60.72 | 6.12 | 3.33 | 4.67 |
| 196-198 ${ }^{\circ} \mathrm{C}$ (dec) |  |  |  |  |  |  |
|  | 2197 vs | $\begin{aligned} & 1.77 \pm 0.06 \\ & 2.47 \pm 0.03 \mathrm{BM} \end{aligned}$ | 57.80 | 5.70 | 3.71 | 4.71 |
| Yellow-brown |  |  | 57.97 | 5.73 | 3.71 | 5.20 |
| $180-186^{\circ} \mathrm{C}$ (dec) |  |  |  |  |  |  |
|  | 2177 vs | $1.54 \pm 0.04$$2.49 \pm 0.02 \mathrm{BM}$ | 54.76 | 5.70 | 3.19 | 4.31 |
| Rust red |  |  | 54.78 | 5.60 | 3.33 | 4.67 |
| $152-155^{\circ} \mathrm{C}$ (dec) |  |  |  |  |  |  |
| $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{1}\right)_{3}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{p}\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\begin{gathered} 2187 \mathrm{vs} \\ \approx 2208 \mathrm{w}(\mathrm{sh}) \end{gathered}$ | $2.44 \pm 0.12$ | 57.15 | 5.79 | 3.10 | 4.30 |
| Flesh pink |  | $3.08 \pm 0.06 \mathrm{BM}$ | 57.23 | 5.75 | 3.15 | 4.42 |
| $88-95^{\circ} \mathrm{C}$ (dec) |  |  |  |  |  |  |
|  | $\begin{gathered} 2199 \mathrm{vs} \\ \approx 2168 \mathrm{w}(\mathrm{sh}) \end{gathered}$ | $\begin{aligned} & 1.51 \pm 0.05 \\ & 2.40 \pm 0.03 \mathrm{BM} \end{aligned}$ | $\begin{aligned} & 55.05 \\ & 55.43 \end{aligned}$ | 5.465.43 | 3.33 | 5.04 |
| Rust red |  |  |  |  | 3.59 |  |
| $198-206^{\circ} \mathrm{C}$ (dec) |  |  |  |  |  |  |

"Values for $K-N \equiv C$ are given in $\mathrm{cm}^{-1} ; s=$ strong, $w=$ weak, $v=$ very, sh $=$ shoulder; ${ }^{b}$ Insufficient solubility in $\mathrm{CH}_{3} \mathrm{OH}$ for accurate analysis.
TABLE 11 Solution properties of ris(alkylisocyanide)his(triarylphosphine)cobalt(II) complexes

| Complex | $\nu(-N \equiv C)$ infrared" |  |  | Electronic spectra ${ }^{\text {b }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{CH}_{3} \mathrm{NO}_{2}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ |
| $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ | $\begin{gathered} 2181 \mathrm{vs} \\ [\sim 2147 \mathrm{wh})] \\ \sim 2110 \mathrm{w} \\ \sim 2075 \mathrm{w} \end{gathered}$ | $\begin{array}{r} 2179 \mathrm{vs} \\ {[\sim 2128 \mathrm{w}]} \\ {[\sim 2088 \mathrm{w}]} \\ {[\sim 2055 \mathrm{w}]} \end{array}$ | $\begin{array}{r} 2181 \mathrm{vs} \\ {[\sim 2138 \mathrm{w}]} \\ 2094 \mathrm{~m} \\ \sim 2070 \mathrm{w} \end{array}$ | $925 \mathrm{br}(263)$ $457 \mathrm{sp}(694)$ $352 \mathrm{sh}(11,600)$ $331(12,600)$ $\sim 276 \mathrm{sh}(12,900)$ $229(46,500)$ | $\sim 922 \mathrm{br}(152)$ $462 \mathrm{sp}(660)$ $\sim 353 \mathrm{sh}(13,700)$ $\sim 330(15,200)$ $\sim 277 \operatorname{sh}(13,800)$ $\sim 229 \operatorname{sh}(51,000)$ |
| $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ | $\begin{gathered} 2192 \mathrm{vs} \\ \underset{\substack{\sim 2154 \mathrm{vw]} \\ \sim 2105 \mathrm{vw}}}{\sim} . \end{gathered}$ | 2187 vs | $\begin{gathered} 2190 \mathrm{vs} \\ {[\sim 2137 \mathrm{wl}} \\ \sim 2098 \mathrm{~m} \end{gathered}$ | $\begin{gathered} 928 \mathrm{br}(195) \\ 455(925) \\ \sim 351(9750) \end{gathered}$ | $\begin{gathered} 932 \mathrm{br}(175) \\ 463(780) \\ \sim 356(12,500) \end{gathered}$ |
|  | $\sim 2076$ vw |  | $\sim 2073 \mathrm{~m}$ | $\begin{aligned} & 327(10,500) \\ \sim & 265 \operatorname{br}(22,000) \end{aligned}$ | $\begin{aligned} & 329(13,500) \\ \sim & 282 \operatorname{sh}(13.000) \\ \sim & 273 \operatorname{sh}(13,500) \\ & 229.5 \operatorname{sh}(44,500)\end{aligned}$ |
| $\left.\left[\mathrm{Co}(\mathrm{CNCHMe})_{2}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ | $\begin{array}{r} 2194 \mathrm{vs} \\ \mid \sim 2157 \mathrm{w]} \\ \mid \sim 2143 \mathrm{wl} \end{array}$ | $\begin{gathered} 2190 \mathrm{vs} \\ {[\sim 2159 \mathrm{vw}]} \\ \{\sim 2115 \mathrm{w}\} \\ {[\sim 2082 \mathrm{w}]} \\ {[\sim 2050 \mathrm{w}]} \end{gathered}$ | $\begin{aligned} & 2193 \mathrm{vs} \\ & {[\sim 296 \mathrm{vw}(\mathrm{sh})]} \\ & {[\sim 2136 \mathrm{w]}} \\ & \sim 2096 \mathrm{w} \\ & \sim 2074 \mathrm{w} \end{aligned}$ | $\begin{gathered} 932 \mathrm{br}(305) \\ 456 \mathrm{sp}(963) \\ 353(1,800) \\ 329(12,500) \\ \sim 275 \mathrm{sh}(13,900) \\ 230(53,600) \end{gathered}$ | $\begin{aligned} & 932 \mathrm{br}(275) \\ & 464 \mathrm{sp}(800) \\ & 358(13,300) \\ & 330(13,800) \\ & 27 \operatorname{sh}(13,200) \\ & 229 \operatorname{sh}(46,700) \end{aligned}$ |
| $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}_{3}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{BFF}_{4}\right)_{2}$ | $\begin{gathered} \sim 2196 \mathrm{w} \\ \underset{2090 \mathrm{vs}^{\mathrm{c}}}{ } \end{gathered}$ | $\begin{array}{r} 2197 \mathrm{vs} \\ {[\sim 2163 \mathrm{w}\}} \\ {[\sim 2126 \mathrm{w}\}} \\ {[\sim 2087 \mathrm{w}]} \\ {[\sim 2053 \mathrm{w}]} \end{array}$ | $\begin{gathered} 2201 \mathrm{~s} \\ {[\sim 2170 \mathrm{wl}} \\ {[\sim 2134 \mathrm{wh}(\mathrm{sh})]} \\ 2099 \mathrm{~m} \\ \sim 2075 \mathrm{w}(\mathrm{sh}) \end{gathered}$ | $\begin{gathered} \approx 914 \mathrm{br}(199) \\ 462 \mathrm{sp}(1140) \\ 358(11,200) \\ 330(11,000) \\ \sim 270 \mathrm{sh}(18,100) \end{gathered}$ | $\begin{gathered} \approx 920 \operatorname{br}(172) \\ 471 \operatorname{sp}(1020) \\ 362(12,100) \\ 332(11,300) \\ \sim 283 \operatorname{sh}(12,200) \\ \approx 230 \operatorname{sh}(50,000) \end{gathered}$ |
| $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ | $\begin{gathered} 2189 \mathrm{vs} \\ {[\sim 2160 \mathrm{vw}(\mathrm{sh})]} \\ \sim 2085 \mathrm{vw} \end{gathered}$ | $\begin{array}{r} 2185 \mathrm{vs} \\ {[\sim 2129 \mathrm{w}\}} \\ {[\sim 2089 \mathrm{wd}} \\ {[\sim 2055 \mathrm{w}\}} \end{array}$ | $\begin{array}{r} 2188 \text { vs } \\ \sim 2083 \mathrm{w} \end{array}$ | $931 \mathrm{br}(324)$ $475 \mathrm{sp}(1000)$ $368(12,900)$ $344(12,100)$ $\sim 288 \mathrm{sh}(13,000)$ $236(60,900)$ | $\begin{aligned} & 933 \mathrm{br}(195) \\ & 482 \mathrm{sp}(890) \\ & 370(19,400) \\ & 339(18,300) \\ & 288.5(21,600) \\ & 235 \mathrm{sh}(104,000) \end{aligned}$ |

TABLE II (Continued)

| Complex | $\nu(-N \equiv C)$ infrared ${ }^{\text {a }}$ |  |  | Electronic spectra ${ }^{\text {b }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ | $\mathrm{CH}_{3} \mathrm{NO}_{2}$ | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ |
| $\left.\left[\mathrm{Co}\left(\mathrm{CNCHMe}_{2}\right)_{3}\left(\mathrm{P}_{(\mathrm{C}}^{6} \mathrm{H}_{4} \mathrm{Me}-\right)_{3}\right\}_{3}\right]_{2}\left(\mathrm{ClO}_{4}\right)_{2}$ | $\begin{gathered} 2191 \mathrm{vs} \\ {[\sim 2155 \mathrm{vw}]} \end{gathered}$ | $\begin{array}{r} 2188 \mathrm{vs} \\ {[\sim 2158 \mathrm{w}]} \\ {[\sim \dot{\sim} 2122 \mathrm{w}]} \\ {[\sim 2083 \mathrm{w}]} \\ {[\sim 2050 \mathrm{w}]} \end{array}$ | $\begin{gathered} 2191 \mathrm{vs} \\ {[\sim 2137 \mathrm{w}]} \\ \sim 2100 \mathrm{w} \\ \sim 2070 \mathrm{w} \end{gathered}$ | 928 br $(327)$ $475 \mathrm{sp}(1090)$ $368(13,400)$ $344 \operatorname{sh}(12,700)$ $\sim 288 \operatorname{sh}(13,300)$ $235(61,400)$ | $\begin{aligned} & 929 \mathrm{br}(294) \\ & 482 \mathrm{sp}(901) \\ & 370(14,500) \\ & 343 \mathrm{sh}(13,100) \\ & 290 \mathrm{sp}(13,100) \\ & 236 \mathrm{sh}(64,400) \end{aligned}$ |
| $\left.\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left\{\mathrm{P}_{(\mathrm{C}}^{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{p}\right)_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ | $\begin{array}{r} 2177 \mathrm{vs} \\ {[\sim 2144 \mathrm{w}]} \end{array}$ | $\begin{gathered} 2177 \mathrm{vs} \\ {[\sim 2124 \mathrm{vw}]} \\ {[\sim 2083 \mathrm{wl}]} \\ {[\sim 2049 \mathrm{w}]} \end{gathered}$ | $\begin{gathered} 2177 \mathrm{vs} \\ {[\sim 2145 \mathrm{vw}]} \\ \sim 2090 \mathrm{vw} \\ \sim 2060 \mathrm{vw} \end{gathered}$ | $\begin{gathered} 926 \text { br }(322) \\ \approx 545 \operatorname{sh}(570) \\ \approx 490 \operatorname{sh}(1030) \\ 390 \operatorname{sp}(16,100) \\ 350 \operatorname{sh}(10,900) \\ 30 \operatorname{sh}(12,500) \\ 251(89,700) \end{gathered}$ | $\begin{aligned} & \sim 928 \mathrm{br}(197) \\ & \approx 530 \mathrm{sh}(750) \\ & \approx 480 \mathrm{sh}(1200) \\ & 389 \mathrm{sp}(18,600) \\ & 349 \mathrm{sp}(11,900) \\ & 305(13,400) \\ & \approx 283 \mathrm{sh}(17,800) \\ & 251 \mathrm{sp}(91,000) \end{aligned}$ |
| $\left.\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{41}\right)_{3}\left\{\mathrm{P}_{(\mathrm{C}}^{6} \mathrm{H}_{4} \mathrm{OMe-p}\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ | 2186 vs | $\begin{aligned} & 2183 \mathrm{vs} \\ & {[\sim 2159 \mathrm{w}(\mathrm{sh})]} \\ & {[\sim 2124 \mathrm{w}]} \\ & {[\sim 2083 \mathrm{w}]} \\ & {[\sim 2049 \mathrm{w}]} \end{aligned}$ | 2186 vs | $\begin{gathered} 927 \operatorname{br}(367) \\ \approx 520 \operatorname{sh}(1020) \\ 389 \operatorname{sp}(14,900) \\ 351 \operatorname{sh}(10,500) \\ 302 \operatorname{sh}(11,900) \\ 251(82,500) \end{gathered}$ | $\begin{gathered} 932 \operatorname{br}(349) \\ \approx 535 \operatorname{sh}(770) \\ 391 \operatorname{sp}(14,400) \\ 350 \operatorname{sh}(9600) \\ 305(10,400) \\ 250(71,900) \end{gathered}$ |
| $\left.\left[\mathrm{Co}(\mathrm{CNCHMe})_{3}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{p}\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ | $\begin{gathered} 2189 \mathrm{vs} \\ {[\sim 2153 \mathrm{vw}]} \end{gathered}$ | $\begin{array}{r} 2186 \mathrm{vs} \\ {[\sim 2158 \mathrm{w}]} \\ {[\sim 2123 \mathrm{w}]} \\ {[\sim 2083 \mathrm{w}]} \\ {[\sim 2049 \mathrm{w}]} \end{array}$ | $\begin{gathered} 2189 \mathrm{vs} \\ {[\sim 2137 \mathrm{w}]} \\ \sim 2100 \mathrm{w} \\ \sim 2073 \mathrm{w} \end{gathered}$ | $\begin{gathered} 922 \mathrm{br}(275) \\ \approx 660 \mathrm{sh}(70) \\ \approx 510 \mathrm{sh}(760) \\ 389(6700) \\ 343(6200) \\ \approx 280 \operatorname{sh}(23,000) \\ \quad 250(66,000) \end{gathered}$ | $\begin{gathered} 930 \mathrm{br}(302) \\ \approx 540 \mathrm{sh}(830) \\ 390 \mathrm{sp}(15,300) \\ 351 \operatorname{sh}(10,200) \\ 305 \mathrm{sh}(10,900) \\ 250(69,000) \end{gathered}$ |

${ }^{\text {V Values for }} \mu(-\mathrm{N} \equiv \mathrm{C})$ are given in $\mathrm{cm}{ }^{-1} ; s=$ strong, $w=$ weak, $v=$ very, $s h=$ shoulder, $s p=$ sharp; probable solvent bands are shown in brackets; ${ }^{b}$ The $\lambda_{\text {max }}(\epsilon)$ values are given in nm
$\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) ;{ }^{\text {P Probable } C o(1) \text { complex due to reduction in this solvent. }}$


FIGURE 1 Representative $\nu(-\mathrm{N} \equiv \mathrm{C})$ IR patterns for the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes, a: $\left[\mathrm{Co}(\mathrm{CNCHMe})_{3}\left\{\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}\right.$ (in Nujol); b: $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}\right\}_{2}\right]-$ $\left(\mathrm{ClO}_{4}\right)_{2}$ (in Nujol); c: $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (in Nujol); d: $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}-\right.\right.\right.$ $\left.\left.\mathrm{Me}-p)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ ).
values for the alkylisocyanide and triarylphosphine ligands are listed in Table III.

## Synthesis of the Complexes

Although the five-coordinate tris(alkylisocyanide)bis(triarylphosphine)cobalt(II) complexes can be synthesized by either reaction of triarylphosphines with the appropriate $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes, or by

TABLE III Measured diamagnetic susceptibilities

| Formula | $\chi_{\mathrm{B}} \times 10^{9}$ | $\chi_{\mathrm{M}} \times 10^{6}$ |
| :--- | :---: | :---: |
| $\mathrm{CNCMe}_{3}$ | $-647 \pm 11$ | $-53.8 \pm 0.9$ |
| $\mathrm{CNC}_{6} \mathrm{H}_{11}$ | $-637 \pm 8$ | $-69.5 \pm 0.9$ |
| $\mathrm{CNCHMe}_{2}$ | $-664 \pm 9$ | $-45.9 \pm 0.6$ |
| $\mathrm{CNCH}_{2} \mathrm{Ph}$ | $-579 \pm 4$ | $-67.8 \pm 0.4$ |
| $\left.\mathrm{P}_{6} \mathrm{C}_{6} \mathrm{He}_{4} \mathrm{Me}-p\right)_{3}$ | $-655 \pm 12$ | $-199 \pm 4$ |
| $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}$ | $-571 \pm 5$ | $-201 \pm 2$ |

$\mathrm{AgClO}_{4} / \mathrm{AgBF}_{4}$ oxidation of the appropriate $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}, \mathrm{X}=$ $\mathrm{ClO}_{4}, \mathrm{BF}_{4}$ complexes, ${ }^{10}$ the latter procedure is superior as a general method, and therefore was employed for most of the syntheses in this investigation. Synthesizing the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes from $\left[\mathrm{Co}(\mathrm{CNR})_{4}-\right.$ $\left.\left(\mathrm{AsPh}_{3}\right)_{2}\right] \mathrm{X}_{2}$, while keeping both the formation of $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}$ and the amount of unreacted $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right] \mathrm{X}_{2}$ to a minimum, requires different, experimentally-established, individual reaction conditions for each $\mathrm{PR}_{3}$ and CNR ligand used, rendering this procedure tedious. This method was used to synthesize $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}\right\} 2\right]\left(\mathrm{ClO}_{4}\right)_{2}$, however, and the reaction conditions were adjusted to leave unreacted $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ starting material in preference to the formation of $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4} \text {, which would have occur- }}\right.\right.$ red for longer reaction periods and/or a higher mol ratio of $\mathrm{PR}_{3}$ to $\mathrm{Co}(\mathrm{II})$. Unreacted $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ is, in general, more easily removed from $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ than is $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{ClO}_{4}\right.$.
The reported preparation of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ by $\mathrm{AgClO}_{4}$ oxidation of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$, in $1: 1.10 \mathrm{Co}: \mathrm{Ag}$ mol ratio, is typical of this method of synthesis. Slight excess of $\mathrm{Ag}^{+}$and sufficient reaction times are necessary for total (or near total) oxidation of the Co(I), but large excesses of $\mathrm{Ag}^{+}$especially, and prolonged reaction times to a lesser extent, tend to decrease yield of the $\mathrm{Co}(\mathrm{II})$ complex. It is possible that some oxidation of the alkylisocyanide and/or triarylphosphine ligands takes place during this reaction, increasingly so with excess $\mathrm{Ag}^{+}$and/or prolonged reaction time. In the case of the attempted oxidation of $\left[\mathrm{Co}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-n\right)_{3}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]_{C l O}^{4}$ (see later section), formation of $\left[\mathrm{Co}\left(\mathrm{OPPh}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ is clear evidence for the oxidation of the $\mathrm{PR}_{3}$ ligands. Competing oxidation of $\mathrm{PR}_{3}$ and/or CNR could account for the rather modest yields of the $\mathrm{Co}(\mathrm{II})$ complexes.
The $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}, \mathrm{X}=\mathrm{ClO}_{4}, \mathrm{BF}_{4}$ complexes are readily prepared through reaction of excess triarylphosphine ligand with the pure alkyliso-cyanide-Co(II) complexes, either previously isolated in the solid state as
$\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2},{ }^{5} \quad\left[\mathrm{Co}_{2}(\mathrm{CNCHMe})_{10}\right]\left(\mathrm{ClO}_{4}\right)_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O},{ }^{6}$ and $\left[\mathrm{CO}_{2}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{10}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}^{11}$ or reacted in situ for $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)\right.$ s] $\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{Co}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-n\right)_{5}\right]\left(\mathrm{ClO}_{4}\right)_{2}$. Incomplete reduction of $\mathrm{Co}(\mathrm{II})$ to $\mathrm{Co}(\mathrm{I})$ is achieved in many instances, so a minor product of $\left[\mathrm{Co}(\mathrm{CNR})_{3}-\right.$ $\left(\mathrm{PR}_{3}\right)_{2} \mathrm{XX}_{2}$ may be obtained with the crude $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}$ product. The $\mathrm{Co}(\mathrm{II})$ complex remaining unreduced in the sample can be reduced to $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}$ with $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, however, either by treating the isolated crude product with a small amount of $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, as in the reported synthesis of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PPH}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$, or by adding several drops of $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ to the initial reaction mixture, as in the reported synthesis of $\left[\mathrm{Co}\left(\mathrm{CNCHMe}_{2}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{p}\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}$. The latter procedure is shorter, and tends to produce better yield.

Attempts to oxidize $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}$ to $[\mathrm{Co}(\mathrm{CNC}-$ $\left.\left.\mathrm{Me}_{3}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-\mathrm{p}\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ have thus far been unsuccessful. Upon reaction with $\mathrm{AgClO}_{4}$ using the usual $1: 1.1 \mathrm{Co}: \mathrm{Ag}$ mol ratio, only unreacted $\mathrm{Co}(\mathrm{I})$ starting material was recovered. Increasing the $\mathrm{Ag}: \mathrm{Co} \mathrm{mol} \mathrm{ratio}$ to $1.25: 1$ and changing the first solvent from $\mathrm{CH}_{3} \mathrm{CN}$ to $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ produced a small amount of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ along with unreacted $\mathrm{Co}(\mathrm{I})$ starting material, and reaction with $\mathrm{AgClO}_{4}$ in $1: 2 \mathrm{Co}: \mathrm{Ag}$ mol ratio only increased the still mediocre yield of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2}$. Driving the $\mathrm{Co}(\mathrm{I})$ oxidation with excess $\mathrm{Ag}^{+}$and longer reaction times still apparently cannot produce the desired $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right]^{2+}$ complex, or that complex once formed is insufficiently stable to allow isolation, decomposing instead to the pure alkylisocyanide complex of $\mathrm{Co}(\mathrm{II})$. The irreversibility of the oxidative cycle for $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}{ }^{9}$ actually forecasts this problem in the synthesis. Reaction of $\left[\mathrm{Co}\left(\mathrm{CNC}_{6}-\right.\right.$ $\left.\left.\mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ with excess $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p\right)_{3}$ also produced only unreacted starting material in good yield ( $52 \%$ ). Thus, it appears that the stability of the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right]^{2+}$ complexes becomes limited for triarylphosphine ligands with electron-withdrawing substituents, as well as the corresponding $\mathrm{Co}(\mathrm{I})$ complexes simply becoming increasingly difficult to oxidize, as evidenced by their increasing oxidation potentials. ${ }^{9}$

Five-coordinate $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right]^{2+}$ complexes with $\mathrm{CNCMe}_{3}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}$, and with $\mathrm{CNCH}_{2} \mathrm{Ph}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}$ or $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{p}\right)_{3}$ ligands are absent in Tables I and II; the chemistry in these instances is different and still under investigation. The $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left\{\mathrm{P}^{\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.}\right.\right.$ $\left.\left.\mathrm{Me}-\mathrm{p})_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ complex may exist, but the six-coordinate $\mathrm{Co}(\mathrm{II})$ species, $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, is more stable in solution and appears to be the major product in $\mathrm{AgClO}_{4}$ oxidation of $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}-\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}\right\}_{2}\right] \mathrm{ClO}_{4}$. At present there is no explanation for this
apparently anomalous behaviour. With $\mathrm{CNCH}_{2} \mathrm{Ph}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{p}\right)_{3}$ ligands, an unexpected apparent disproportionation of $\mathrm{Co}(\mathrm{II})$ leads to the products $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{p}\right)_{3}\right\}_{3}\right] \mathrm{BF}_{4}$ and $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{4}-\right.$
 high solubility of $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}\right)_{2}\right] \mathrm{BF}_{4}$ has restricted study, but it appears that a $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}\right\}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ complex is formed.
Attempts to synthesize $\left[\mathrm{Co}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-n\right)_{3}\left(\mathrm{PR}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ complexes has been limited to unsuccessful cases using the $\mathrm{PPh}_{3}$ ligand. After apparent oxidation of $\left[\mathrm{Co}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-n\right)_{3}\left(\mathrm{PPH}_{3}\right)_{2}\right]_{C l O}^{4} 4$ with $\mathrm{AgClO}_{4}$, a dark blue product, identified as $\left[\mathrm{Co}\left(\mathrm{OPPh}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ by IR and electronic spectra, ${ }^{10}$ was isolated after extensive refrigeration and recrystallization. The tendency for $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right]^{2+}$ complexes to decompose into $\left[\mathrm{Co}\left(\mathrm{OPR}_{3}\right)_{4}\right]^{2+}$ in solution has been investigated for $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}{ }^{10}$ and
 is not unexpected for a $\mathrm{Co}(\mathrm{II})$ product that remains in solution or in contact with the solution for a prolonged period. Relatively rapid isolation of the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes is essential.

## Characterization of the Complexes

Characterization of the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes in the solid state is primarily through Nujol mull $\nu(-\mathrm{N} \equiv \mathrm{C})$ IR patterns and magnetic susceptibility measurements, since the poorly-defined decomposition ranges are not very diagnostic. The typical IR pattern of one strong band with an unresolved but distinct lower-energy shoulder, illustrated by $\left[\mathrm{Co}(\mathrm{CNCHMe})_{3}-\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}\right\}_{2}\right\}\left(\mathrm{ClO}_{4}\right)_{2}$ (see Figure 1(a)), can be interpreted as supporting trigonal bipyramidal coordination, with the slight distortion that is common in the solid state. A rigorously $D_{3 h}$ trigonal bipyramid with equatorial CNR ligands requires only one $\nu(-\mathrm{N} \equiv \mathrm{C})$ of course (i.e., $E^{\prime}$ ), but some slight distortion in the solid state is usually present. For $\left[\mathrm{Co}(\mathrm{CNCMe})_{3}\right)_{3}$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ even a single $\nu(-\mathrm{N} \equiv \mathrm{C})$ is observed, but for $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ both higher-energy, as well as lower-energy, shoulders are observed, albeit weak to very weak shoulders. These patterns are all compatible with trigonal bipyramidal coordination.
Two complexes, notably $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}}\right.\right.$ (see Figure $\mathrm{l}(\mathrm{b})$ ) and $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}\right.$ (see Figure $\mathrm{I}(\mathrm{c})$ ), have $\nu(-\mathrm{N} \equiv \mathrm{C})$ IR patterns with two dominant bands. This is not compatible with non-distorted or slightly distorted, axially disubstituted, trigonal
bipyramidal coordination. This pattern, especially as shown in Figure 1(b), is reminiscent of the $\nu(-\mathrm{N} \equiv \mathrm{C}) \mathrm{IR}$ patterns often seen for $\left[\mathrm{Co}(\mathrm{CNR})_{3}\right.$ $\left(\mathrm{PR}_{3}\right)_{2} \mathrm{ClO}_{4}$ complexes with arylisocyanides as well as alkylisocyanides, and with triarylphosphine and trialkylphosphine ligands. ${ }^{5.6,9,14-16}$ These fivecoordinate $\mathrm{Co}(\mathrm{I})$ complexes have been interpreted ${ }^{17}$ as having $\mathrm{C}_{2 r}$-distorted, axially disubstituted, trigonal bipyramidal structures in which equatorial bond angles deviate from $120^{\circ}$. An equatorially disubstituted, trigonal bipyramid ( $C_{2 v}$ symmetry), an axial-equatorial disubstituted, trigonal bipyramid ( $C_{s}$ ), or any disubstituted square pyramidal coordination ( $C_{2 v}$ or $C_{s}$ ) would also account for this IR pattern by having three allowed $\nu(-\mathrm{N} \equiv \mathrm{C})$ modes. Adduction of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules in the crystal lattice, common for $\mathrm{Co}(\mathrm{II})$ as well as $\mathrm{Co}(\mathrm{I})$ complexes with organoisocyanide ligands, could be a reason for this apparent deviation from idealized $D_{3 h}$ trigonal bipyramidal coordination.

Effective magnetic moments ( $\mu_{\text {eff }}$ ) for the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes (see Table I) were calculated from room-temperature magnetic susceptibility measurements necessarily assuming Curie Law behaviour and using diamagnetic corrections for the ions taken from the literature ${ }^{18}$ and directly measured for the ligands (see Table III). Magnetic moments are primarily within the range normally observed for low-spin Co(II) complexes in general, i.e., $1.8-2.7 \mathrm{BM},{ }^{18.19}$ although the value for $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}-\right.\right.\right.$ $\left.\left.\mathrm{Me}-p)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(3.08 \mathrm{BM})$ is abnormally high. Because of the strong similarities within this series of complexes, however, it would be expected that all of these complexes exhibit one-electron paramagnetism, which is typical for five-coordinate $\operatorname{Co}(\mathrm{II})$ complexes with strong field ligands. The value of 3.08 BM is still well below the normal range for high$\operatorname{spin} \mathrm{Co}(\mathrm{II})$ complexes, i.e., $4.3-5.2 \mathrm{BM} .^{18.19}$
Observed $\nu(-\mathrm{N} \equiv \mathrm{C})$ infrared frequencies for the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$, and $\mathrm{CH}_{3} \mathrm{NO}_{2}$ are summarized in Table II, and a representative spectrum is illustrated in Figure 1(d). The basic pattern is a single, strong band at $2177-2201 \mathrm{~cm}^{-1}$, and this is compatible with an axially-disubstituted, trigonal bipyramidal coordination of rigorously $D_{3 h}$ symmetry. In many of the spectra, however, especially those in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$, several weak to very weak bands are observed, which are probably solvent bands that have not been completely erased by using the pure solvent in the background scans. In some spectra there is also evidence for apparent partial reduction to a $\mathrm{Co}(\mathrm{I})$ species, presumably $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right]^{+}$. For $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, but not in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ or $\mathrm{CH}_{3} \mathrm{NO}_{2}$, this apparent reduction is extensive. The $\nu(-\mathrm{N} \equiv \mathrm{C})$ stretch for the $\mathrm{Co}(\mathrm{I})$ species occur in the range $2070-2090 \mathrm{~cm}^{-1}$
and there may also be a second, lower-energy, weaker band. The two complexes $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{3}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$, that exhibited unusual IR patterns in the solid state, show a regular pattern in solution, except that the latter complex shows extensive reduction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. It appears then, that these complexes show distortion from regular trigonal bipyramidal coordination only in the solid state, reverting to rigorous $D_{3 h}$ symmetry in solution.

Electronic spectra for the $\left[\mathrm{Co}(\mathrm{CNR})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (see Table II), are not very diagnostic. They exhibit a very broad, apparently crystal field band at $\sim 915-935 \mathrm{~nm}$, a sharp, apparently crystal field band at $\sim 455-485 \mathrm{~nm}$, and a number of charge transfer bands in the UV region. These electronic spectra are also compatible with trigonal bipyramidal coordination. Acetonitrile could not be used as a solvent due to reduction of some of the complexes. Spectra in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ appear to be analogous, although solutions in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ can be measured to shorter wavelength. These appear to be non-coordinating solvents.

## Acknowledgements

The author wishes to thank the Faculty of Science Research and Publications Committee of the University of Botswana for a grant supporting this research. The author also wishes to acknowledge Mr. Nlingisisi Babayani, Temporary Assistant in the Department of Chemistry, University of Botswana, for characterization of some of the complexes, and Mr. Temba Mahachi, Senior Technician, Department of Biological Sciences, University of Botswana, for recording some of the electronic spectra.

## References

[1] R.B. King and M.S. Saran, Inorg. Chem., 11, 2112 (1972).
[2] J.W. Dart, M.K. Lloyd, R. Mason, J.A. McCleverty and J. Williams, J. Chem Soc., Dalton Trans., 1747 (1973).
[3] E. Bordignon, U. Croatto, U. Mazi and A.A. Orio, Inorg. Chem., 13, 935 (1974).
[4] G. Albertin, E. Bordignon, U. Croatto and A.A. Orio, Gazz. Chim. Ital., 104, 1041 (1974).
[5] C.A.L. Becker, A. Anisi, G. Myer and J.D. Wright, Inorg. Chim. Acta, 111, 11 (1986).
[6] C.A.L. Becker, S.A. Al-Qallaf and J.C. Cooper, Inorg. Chim. Acta, 188, 99 (1991).
[7] I. Beaumont and A.H. Wright, J. Organomet. Chem., 425, C11 (1991).
[8] C.A.L. Becker, Synth. React. Inorg. Met.-Org. Chem., 22, 99 (1992).
[9] C.A.L. Becker and K.R. Barqawi, J. Coord. Chem., 34, 273 (1995).
[10] C.A.L. Becker, Synth. React. Inorg. Met.-Org. Chem., 27, 1527 (1997).
[11] C.A.L. Becker, Inorg. Chim. Acta, 203, 175 (1993).
[12] C.A.L. Becker, J. Coord. Chem., 31, 337 (1994).
[13] C.A.L. Becker and O. Al-Jowder, 208th National Meeting of the American Chemical Society, Washington, DC. August 1994, Abstr. No. 511 (Inorg. Div.).
[14] C.A.L. Becker, J. Inorg. Nucl. Chem., 42, 27 (1980).
[15] C.A.L. Becker, Inorg. Chim. Acta, 77, L247 (1983).
[16] C.A.L. Becker and N.K. Homsy, Inorg. Chim. Acta, 89,95 (1984).
[17] C.A.L. Becker and G.C. Papavassiliou, J80th National Meeting of the American Chemical Society, Las Vegas. NV, August 1980, Abstr. No. 295 (Inorg. Div.).
[18] B.N. Figgis and J. Lewis, in J. Lewis and R.G. Wilkins (Eds.) Modern Coordination Chemistry (Interscience. New York, 1960), Chap. 6.
[19] JM Magnetic Susceptibility Balance Instrument Manual (Johnson Mathey Chemicals, York Way, Royston Hertfordshire SG8 5HJ, U.K.).

